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Externalities and Growth Accounting

By Jess BENHABIB AND BoyaNn JovanNovic*

This paper tackles two puzzles: the high empirical elasticity of aggregate output
with respect to the measured capital input and the seemingly high variability of
growth rates over countries in the medium run. We find that one need not
invoke increasing returns or externalities to capital to explain these two puzzles.
Rather, they are consistent with a constant-returns-to-scale aggregate production
function, so long as the exogenous Solow residual process has enough persis-
tence in it. In our model, causality runs exclusively from knowledge to capital,
and therefore the apparent absence of an external effect to the capital input
says nothing about the importance of spillovers in the creation of knowledge.

(JEL 110)

This paper addresses the question of how
to explain the variation in the levels and
rates of growth of output across countries.
It focuses in particular on the question of
whether or not this cross-country variation
offers support for the suggestion that there
are aggregate increasing returns to capital
and labor caused either by external effects
associated with capital investment or by a
secular increase in the variety of intermedi-
ate inputs. By looking again at the evidence
considered by Paul Romer (1987) and
Lawrence Christiano (1987), we show that,
under plausible assumptions about the be-
havior of the economy, there is no support
for the assertion that capital-related exter-
nalities are present. We show instead that
the variation in countries’ growth rates is
consistent with each country having the same
constant-returns-to-scale production func-
tion and with a stochastic process for tech-
nological change that is the same across
different countries but starts from different
initial positions.
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A. The Issues

Two issues are at hand. The first concerns
the prediction of Robert Solow’s (1957)
model that the elasticity of output with re-
spect to capital should equal capital’s share
in output, which is roughly one-third. Yet
when one looks at data over longer periods
of time and in several different countries, as
Romer (1987) has, one finds an elasticity
that is closer to unity. There are three ex-
tensions of Solow’s model that can generate
this. One is to make the identifying assump-
tion that Romer makes, at least implicitly,
that the fundamental exogenous variation is
in the rate of savings and investment. In this
case, one must change the elasticity of out-
put with respect to capital by invoking cap-
ital-related external effects or increasing
returns stemming from input variety. The
second possibility is to make the identifying
assumption that Christiano (1987) makes
and that we discuss in Section IV, namely
that the exogenous variation across coun-
tries is in the underlying exogenous process
of technical change. The third alternative,
suggested here, is to assume that the funda-
mental stochastic process for technology is
the same but that in the sample the realized
paths differ across countries. In this case,
something like Christiano’s explanation can
be constructed (and no capital externalities
are needed), but this can be done without
invoking his unattractive “fixed effects” as-
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sumption that there are permanent, exoge-
nous differences in the technology faced by
different countries. Rather, the difference
across countries lies in the initial conditions
and implicitly in the sequence of historical
accidents that lead to those conditions. We
deal with this first issue in Section IV.

The second issue is whether (our version
of) Solow’s model can be reconciled with
the seemingly large variation in countries’
growth rates since World War II. We shall
argue that this variation is roughly consis-
tent with Solow’s model. Part of the new
evidence that we bring to bear on this asser-
tion is the finding that, for the population of
countries as a whole, the time-series varia-
tion in output growth in a repre-
sentative country is consistent with the
cross-country variation in output growth
measured over 25 years. This bears on the
question of the inherent differences, if any,
that must be invoked to explain the dis-
parate behavior of the different countries.
We deal with this second issue in Section
III.

B. Capital and Knowledge

There seems, on first consideration, to be
little reason to expect a firm’s investment in
capital to have substantial beneficial
spillover effects in reducing production costs
of other firms. However, if firms with more
capital also have more productive knowl-
edge and if this knowledge spreads to other
firms, then unless one can somehow mea-
sure knowledge and control for it, an in-
crease in the capital stock of one firm will
appear to lower the production costs of
other, firms. In the same vein, if the econ-
omy’s capital stock is positively related to
the availability of specialized intermediate
inputs and if these inputs are not measured,
the growth of capital will appear to increase
aggregate output by more than its private
marginal product.

In his pioneering article, Romer (1987)
offers two separate models each of which
can generate a capital elasticity of output
larger than one-third. Within the context of
his first model, he argues that a large posi-
tive externality in capital formation is

1
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needed to explain the strong positive associ-
ation in aggregate data (over countries and
over epochs) between the “Solow residual”
and the growth of the capital stock. More-
over, the size of his externality estimate is
staggering: the social marginal product of
capital, suggests Romer, is perhaps twice or
even three times its private marginal prod-
uct, and by implication, the equilibrium level
of investment falls far short of its socially
optimal level.!

Romer’s second model introduces knowl-
edge explicitly in the form of ideas for
intermediate goods. In its implications for
comovements between aggregate output,
capital, and labor, this model is observation-
ally equivalent to a version of his first model,
as is evident in his equation 11. This model
need not have any direct spillovers of
knowledge to yield aggregate increasing re-
turns, although in later versions Romer in-
troduces direct spillovers in the research
sector. The “externality” that the final goods
sector enjoys is, as Romer points out, a
pecuniary one, and a divergence between
equilibrium and social optimum could arise
solely because of the monopoly power intro-
duced into the intermediate-goods sector so
as to provide incentives for inventions.

Romer’s two models have a common fea-
ture: growth in capital causes a growth in
knowledge or a growth in the availability of
specialized inputs, or both.? Evidence of
direct spillovers of knowledge then consti-
tutes support for Romer’s first model. On
the other hand, evidence that pecuniary
spillovers are present (and that such
spillovers increase with the capital stock)
would provide support for the second model,
so long as some increasing returns (as in-
puts and variety vary) are also present. Un-

!Christiano (1987) challenges these conclusions,
claiming that a balanced-path outcome for the Solow
model is consistent with the data and that no capital
externality is required. Indeed, in the deterministic
case, along the balanced-growth path, the externality
cannot be identified. Martin N. Baily (1987) and others
have made the same point. We return to Christiano’s
argument in Section IV.

2See especially Romer’s reference to evidence from
Jacob Schmookler (1966) to the effect that in various
industries patenting tends to follow investment.
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fortunately, the available evidence often
mixes the two types of externality (pecuniary
and nonpecuniary) so that their relative (as
well as absolute, it turns out) importance is
hard to pin down.

We begin with the assumption, implicit in
Romer’s first model, that an increase in a
firm’s capital stock causes the firm’s produc-
tive knowledge to go up in the same propor-
tion, so that we can use estimates from
micro data on externalities in R&D as an
estimate of the size of the capital external-
ity. If direct spillovers to R&D do exist,
they are likely to be largest among firms in
the same industry, since those firms are
likely to be using similar technologies. The
largest intraindustry spillover estimates were
obtained by Jeffrey Bernstein and Ishaq M.
Nadiri (1989), who find that, in four indus-
tries, the social returns to intraindustry
spillovers of R&D ranged from 30 percent
to 123 percent of the private returns to
R&D.3 Such large estimates are, however,
exceptions: in a summary of the literature

3Edwin Mansfield et al. (1977) also find large
spillovers for a select group of innovations, but since
these were all successful innovations, their sample does
not accurately represent the outcome of investments in
R&D. On the other hand, while the absolute value of
the private and social rates of return is clearly biased
upward in their sample, their relative magnitudes are
perhaps not biased. Among their 18 innovations, the
social rate of return averaged 77 percent, while that of
the private rate averaged 33 percent. These results do
support Romer’s claim that the social returns might
exceed the private rate by a factor of more than two.
Bernstein and Nadiri’s results must also be viewed with
caution, because they are based on a deterministic
model, and simuitaneity biases are likely to be present
because of omitted time effects and unobservable in-
dustry effects. In essence, they evaluate the spillover
from the partial correlation between a firm’s invest-
ment in physical capital and R&D on the one hand
and the industry investment in R&D on the other.
These variables will usually be positively correlated,
because they both will respond to industry shocks, time
effects, and so on, and this response will cause an
upward bias on any estimate of R&D spillovers that
relies on this partial correlation. Similarly, Adam Jaffe’s
(1986) finding that there were significant spillovers in a
cross section is questionable on grounds that his as-
sumption (on p. 992) about an absence of correlation
between his instrumental variables and the unobserved
“technological opportunity” parameter that each firm
faces is unlikely to be met.
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on the elasticity of output with respect to
the R&D input, Zvi Griliches (1988 p. 15)
reports that ‘“while the presence of
spillovers would make one expect the indus-
try-level coefficients to be higher than those
estimated at the firm level, the econometric
estimates do not show this in any convincing
fashion.”* If aggregating up to the industry
level makes little difference to the estimates
of the R&D coefficient, it would be quite
surprising if aggregating to the whole econ-
omy would produce a large upward revision
(specifically, a tripling) of the R&D coeffi-
cient. However, this is exactly what Romer’s
first argument implies, and the micro data
do not seem to support it.

The micro evidence does not seem to
favor Romer’s second argument either.
Frederick M. Scherer (1982) finds that pro-
ductivity growth in an industry is strongly
correlated with the extent to which it pur-
chases R&D-embodying products. Addi-
tionally, a wealth of evidence points to sus-
tained cost reductions in a whole range of
intermediate-inputs services. It is beyond
dispute, therefore, that final-goods produc-
ers have benefitted from sustained improve-

“Ariel Pakes and Mark Schankerman (1984b) find a
much stronger correlation between industry-wide R&D
and lagged industry growth than they do between firm
R&D and firm growth. However, they interpret the
causality as running from industry growth to R&D, in
the spirit of Schmookler’s argument that the incentive
to do R&D increases as market size grows. It seems
crucial, at the industry level, to impose assumptions
that allow one to distinguish shifts in product-demand
from shifts in technological opportunity. A different,
and more questionable, source of evidence on spillovers
is the rate at which the economic value of private
knowledge decays. The faster a piece of knowledge
spills over to other firms, the faster, presumably, is the
loss of economic rent that the firm can extract from
that piece of knowledge. Pakes and Schankerman
(1984a) find that knowledge depreciates much faster
than physical capital, although they do not interpret
this as implying a high spillover rate for knowledge.
Unfortunately, as Griliches (1979) points out, the value
of private knowledge may decay not just because it
“leaks” to other firms but also because it is superseded
by new knowledge generated by other firms. In other
words, the economic value of knowledge would depre-
ciate even in a world with no spillovers, and its depre-
ciation rate is thus an unreliable indicator of the extent
and speed of spillovers.
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ments in input quality. This does not mean
however, that there are increasing returns
in the aggregate. In fact, we know of no
evidence that (a) aggregate returns to mea-
sured inputs and variety increase or (b) the
provision of variety is fueled by a larger
stock of capital.

In short, the micro data are so far not
conclusive on Romer’s hypotheses. Our aim
here is to show that aggregate data are
consistent with a view that neither direct
nor pecuniary spillovers are fueled by physi-
cal capital. In doing this, we leave open the
possibility that there are increasing returns
due to something else—human capital, per-
haps.

C. Our Argument

In our model, causality runs entirely from
knowledge to capital. Knowledge evolves
exogenously; we do not estimate its external
effects, and indeed, under our assumption
about causality, micro evidence in spillovers
of knowledge says nothing about spillovers
to the capital input. The popular view that
some capital investment is needed for the
implementation of new ideas favors our
causality assumption, since it is natural (as
in Andrei Shleifer [1986], for instance) to
imagine that new ideas precede the installa-
tion of the capital equipment needed to
implement them. Moreover, at the level of
the individual firm at least, micro data indi-
cate that R&D Granger-causes investment,
but that investment does not Granger-cause
R&D (Saul Lach and Mark Schankerman,
1989).

While it reverses the assumption about
causality between capital and knowledge,
our model still admits the possibility of an
externality to the capital input and is in fact
almost the same as Romer’s. Our conclu-
sions, however, are quite different: we ex-
amine a variety of bodies of data and find
no evidence to support the hypothesis that
there are beneficial spillovers arising from
the capital input. The reason why our con-
clusions differ from Romer’s is roughly as
follows. Romer faces simultaneity problems
when he estimates a production function in
which capital and labor are endogenous and
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correlated with the disturbance to the pro-
duction function. One source of distur-
bances to the production function is the
business cycle, and Romer tries to remove it
by filtering out the high frequencies with
long-run averages. He further recognizes
that, even in the long-run data, low-
frequency movements in technology might
create a correlation between the inputs and
the production-function disturbance, but he
argues® that the extent of this correlation
could not plausibly be so large as to reverse
his conclusions. This, however, is where we
disagree with his argument. We make ex-
plicit assumptions about the way in which
the capital and labor inputs evolve in re-
sponse to changes in the state of technol-
ogy. These assumptions enable us to calcu-
late the correlation between the inputs and
the disturbance. We find that, even in the
long-run data, this correlation is plausibly
high enough to explain the high empirical
elasticity of output with respect to the capi-
tal input. Moreover, the positive association
between knowledge shocks and capital in-
vestments also seems to explain most of the
variance in countries’ growth rates in the
postwar period. No externalities or increas-
ing returns are needed.

Section I presents our model, which con-
sists of five structural equations. In Section
II, we present maximum-likelihood and
least-squares estimates for the model using
postwar quarterly and annual U.S. data and
find no evidence of an externality. In Sec-
tion III, we then discuss some of the model’s
implications about the convergence of GNP
among different countries, and interpret the
apparent empirical validity of “Gibrat’s
Law” in the behavior of countries’ GNP
series over extended periods. In Section IV,
we reinterpret Romer’s regression results
(which use data on growth of inputs and
output over long epochs) in terms of the
simultaneity biases that we calculate, and
we conclude that even those data offer no

5Especially on p. 194 with reference to evidence on
the persistence of cross-country differentials in growth
rates.
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evidence for the conjectured positive exter-
nality to the capital input.

After the empirical evidence discussed in
Sections II-IV, Section V presents two
models that give rise to the structural equa-
tions first introduced in Section 1. The first
is a stochastic Diamond type of overlap-
ping-generations model, the second a
Brock-Mirman type of infinite-horizon
model. The sixth and final section offers
some concluding remarks.

I. The Augmented Solow Model

The representative firm produces output
Y, with hired inputs K, and L,, taking as
given the economy-wide capital stock K,
per firm and the state of knowledge Z,. The
production function is

(1)

In the first version of Romer’s model, the
parameter 6 measures the external effect of
capital, an effect that the firm ignores when
making its decisions. In the second version,
0 represents increasing returns in the vari-
ety of intermediate inputs whose quality is
(in an auxiliary equation) linked to the
economy-wide capital_stock. Since all firms
are the same, K, = K,. Letting lowercase
symbols denote logarithms, (1) reads

(2)

When a + 0 is unity, this equation is the
same as Romer’s equation 11. If the firm is
a price-taker in its product and factor mar-
kets, a is capital’s share in output, and
1- a is labor’s share. This is Romer’s refor-
mulation of Solow’s model.®

To this, we now add assumptions about
how knowledge grows and about how the
equilibrium k, and [/, evolve. Knowledge
evolves exogenously, as follows:

(3)
(4)

Y,=K?L"*K?Z,.

y.=(a+0)k,+(1-a)l, + z,.

Zipi=ptpz to lpl<1

w, =&+ Mg _ T A, _,.
%At least a part of this model is in Griliches (1979

p. 102); Griliches there attributes it to an unpublished
note by Yehuda Grunfeld and David Levhari.

MARCH 1991

Thus, the z, process is an ARMAC(1,2).
Three features of (3) and (4) deserve men-
tion. First, u is the rate of exogenous tech-
nical change; one expects it to be positive,
since some knowledge comes for free from
abroad, and in addition, some knowledge is
generated for free domestically as a by-
product of everyday economic activity. At
any rate, the economy’s long-run growth
rate in GNP per capita will be u(1—a) if p
is unity and 0 if p is less than 1. On these
grounds, we expect p to be roughly equal to
unity. Second, the parameter p, or rather
1— p, measures the rate at which knowl-
edge depreciates.” From the work-on busi-
ness cycles by Edward C. Prescott and his
coworkers (e.g., Prescott, 1986), we expect p
to be about 0.99 in the quarterly U.S. data
and 0.96 in the annual data. An important
omission here is a purely transitory compo-
nent to z. Its inclusion would almost cer-
tainly raise the estimates of p that we pre-
sent in the next section and would work in
our favor. In other words, the inclusion of
transitory monetary and other policy effects
on the measured Solow residual and even of
errors in measuring z, would, as will be-
come clear below, help rather than hurt our
case, which hinges on p being close to 1.
Third, the MA(2) specification for w, was
entirely arbitrary; it took two moving-aver-
age terms to remove the autocorrelation
from the residuals in the quarterly U.S.
data.

Next we specify the behavior of the capi-
tal and labor inputs. In Section VI, we shall
present two separate micro models® that
imply the following equation as governing
competitive equilibrium allocations:

(5

where y is a constant.” For some of the

kt+1=7+yt

"Because it is superseded by other knowledge. Actu-
ally, it is not knowledge but rather its economic value
that depreciates.

One of these is in many respects similar to the
model that Edward Prescott (1986) proposes for busi-
ness-cycle analysis.

Equation (5) is an exact specification for the infi-
nite-horizon representative-agent model with logarith-
mic utility, Cobb-Douglas production and 100-percent
depreciation of capital. The details are in Section V.
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results in Sections II and IV, we also as-
sume that

(6) 1, is a stochastic process
independent of z,.

This assumption, which is also given a micro
justification in Section VI, is not used in
Section III, however, where we interpret
long-run growth differentials in countries’
growth experience.

Equations (2)-(5) and assumption (6)
make up the model. In sum, it is Romer’s
model with the added assumptions of ex-
ogenous knowledge and endogenous capital
and labor. The next three sections describe
how we have estimated its parameters. Sec-
tion II uses postwar U.S. data, Section III
uses Alan Heston and Robert Summers’s
(1984) data, and Section IV uses the longer-
run data that Romer compiled from Angus
Maddison (1982) and elsewhere. None of
these bodies of data supports the hypothesis
that 8 is positive.

II. Estimates From Postwar U.S. Data

We begin our empirical inquiry by look-
ing at the postwar U.S. data. The reader
will not be surprised to learn these data
offer no support for a positive 6, since
(a) Romer himself did not cite these data as
supportive of capital externalities,
(b) Prescott (1986) has, with some success,
used a model quite similar to ours but with
0 set equal to 0 to fit detrended postwar
U.S. data, and (c) the short-run data are
notorious in that output fluctuations are
explained almost entirely by variations in

However, for a model with less than 100-percent de-
preciation and general functional forms, the qualitative
features of this relationship, that is the positive covari-
ance of k,,, with k, as well as z,, which are the
critical elements driving our results in the following
section, will be preserved under very reasonable as-
sumptions. This issue is explicitly discussed in Section
V (especially see Lemma 1 and the surrounding discus-
sion). Moreover, in Section IT we shall also present the
estimates for the model’s parameters when the evolu-
tion of the capital stock obeys K, =sY, +(1- §)K,
instead of (5) (see Tables 3 and 4). We shall also
present estimates in Tables 5-8 that use capital data
and hence bypass (5) and (5').

{1 F L ,
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hours worked and hardly at all by the mea-
sured capital input.

A problem presented by the capital input
is that it is likely to be poorly measured, at
least at high frequencies, because of varia-
tion in its utilization rate. Our estimation
procedure in this section begins by treating
k, as unobservable. This assumption under-
lies the calculation of the estimates in the
first four tables. Tables 5-8, on the other
hand, do use capital data.

Substitution of (5) into (2) yields

(M y=(at0)y+(a+8)y,_,
+(1-a)l, +z,.

This is the equation that formed the basis
for the estimates reported in the first two
tables, which used data on log(GNP) for y,
and log(hours worked) for /,. The data are
not detrended. We present two sets of esti-
mates. Table 1 reports the unconstrained
maximum-likelihood estimates!® for the an-
nual and the quarterly data separately. Table
2 reports estimates for the remaining pa-
rameters when « is constrained to equal 3
(i.e., capital’s postwar share in income).
Several points are noteworthy. For the
quarterly data, the unconstrained estimates
are virtually the same as the constrained
estimates, and the likelihood ratio does not
significantly differ from one. The estimate
of p is about the same as that of Prescott
(1986 p. 15). The estimate of 8 is close to 0
and does not differ significantly from O.
When « is freed up, its estimate does not

The likelihood was derived as follows. Multiplying
(7) through by p, lagging one period and subtracting
the result from (7) yields

Y= PYio1=C+(a+8)(y,_1—py,_3)
+(1_a)(1r - pll—l)+ w,

where C=(1-p)(a +6)y+u). The ¢, are assumed
to be normally distributed. Since w contains two mov-
ing-average terms, we used the Box-Jenkins procedure,
setting the two presample error terms to their zero
means. For y, we use log(GNP) in 1982 dollars; for /,
we use log of total hours worked; and for k, we use the
log of total (private fixed plus government) capital, all
for the period 1947-1985, or 1986.
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TABLE 1—UNCONSTRAINED MAXIMUM-LIKELIHOOD ESTIMATES, BASED ON (5)

Data Parameter Estimate SE t P

Yearly? p 0.92 0.02 38.84 0.000
0 0.01 0.09 0.14 0.887
C —-0.36 0.09 -3.72 0.000
A 0.32 0.09 3.24 0.002
A, 0.17 0.09 1.80 0.080
a -0.12 0.09 -1.23 0.225
a? 0.00014

Quarterly® p 0.98 0.002 397.21 0.000
[} -0.13 0.034 -3.87 0.000
C -0.01 0.004 -~3.72 0.000
A -0.15 0.039 -3.99 0.000
Ay 0.19 0.042 451 0.000
a 0.35 0.042 8.24 0.000
o? 0.00007

o

Note: The estimates are unconstrained in that « need not equal
aI.Jog likelihood = 101.63 (37 observations, 31 degrees of freedom)
®Log likelihood = 547.86 (166 observations, 160 degrees of freedom).

TABLE 2—CONSTRAINED MAXIMUM-LIKELIHOOD ESTIMATES, BASED ON (5)

Data Parameter Estimate SE t P

Yearly? P 0.94 0.02 43.34 0.000
0 —0.53 0.14 —3.66 0.000
(o 0.10 0.08 1.23 0.227
Aq 0.61 0.30 2.03 0.050
Ay 0.38 0.26 145 0.155
o? 0.00023

Quarterly® p 0.98 0.01 51.45 0.000
] -0.11 0.04 —-2.73 0.006
C —0.02 0.03 —0.54 0.585
Ay —-0.16 0.04 —-3.81 0.000
Ay —0.18 0.04 4.39 0.000
a? 0.00007

Note: The estimates we constrained in that a = —
a]..og likelihood = 94.09 (37 observations, 32 degrees of freedom).
Log likelihood = 547.82 (166 observations, 161 degrees of freedom).

differ significantly from ;. All in all, then, test resoundingly rejects the restriction that
the model does pretty well with the quar- a=13. These results with annual data are

-

terly data.

Such is not the case with the annual data.
The unconstrained estimate of « is nega-
tive, but not significant; and, 6 is positive,
but small and nonsignificant. Thus, the so-
cial marginal product of capital appears to
be low in these data. This is especially clear
in the first panel of Table 2 in which, when
a is constrained to 3, @ is large but negative
and highly significant. The likelihood-ratio

e
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quite similar to the regression results that
Romer reports in line 2 of his table 2; in
this regression, he allows (as we do) for
exogenous technical change and measures
(as we do) the labor input by hours worked.

An important source of downward bias
on @ deserves mention, however. While our
specification (4) does allow for transitory
components in y, there may nevertheless be
measurement error in y that will cause the
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coeflicient of lagged y in (7), namely a + 6,
to be underestimated because of errors-
in-variables bias. In Table 2, this will cause
@ to be underestimated, while in Table 1,
where a is freed, both @ and 8 may be
underestimated. Put differently, measure-
ment error in y will lead to a spurious
negative dependence between the quasi-first
differences in footnote 10. Such a negative
bias could hide a positive 8.

A second set of problems arises because
it takes time to build capital, and it also
takes time for the external benefits of capi-
tal accumulation to be felt. That is, it is
possible not only that there are significant
building-time delays, but that externalities
affect output with a lag. To test for the
presence of such delays, we considered a
production function Y,= K} L,™°K, .Z,
where p and s represent lags (presumably,
0<p<s). We derived the corresponding
reduced form [the analogue of (7)] for the
infinite-horizon representative-agent' model
where y on the right-hand side appeared
with lags s and p. We estimated this model
using quarterly data for various values of s
and p and found that the best fits, in terms
of likelihood, were for s=p=0. For all
values that we checked for s> 0 (up to
s=12) and p =0, the externality coefficient
@ was 0, and for values s = p > 0, it tended
to be negative.

A third set of problems surround our
assumption in equation (5) about the way in
which capital evolves. Distinct from the is-
sues discussed above concerning the length
of time that it takes to build capital, there is
the issue of how long capital remains pro-
ductive after it has been built; that is, how
fast it depreciates. If y, is measured by
GNP, as we have done, then equation (5)
implies that there is 100-percent deprecia-
tion. On the other hand, if Y, is interpreted
as wealth, then we have not measured
wealth correctly; instead we should have
used net national product plus the entire
existing capital stock. However, then it is
not clear that (1) is the correct production
function, and empirical implementation de-
mands an accurate K, series. For these
reasons, we did not pursue this route. In-
stead we took the following alternative. In
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place of equation (5) (for which a micro-
based justification exists [see Section III]),
we posited the ad hoc Solow-type constant-
savings rule out of income, along with the
conventional assumption that capital depre-
ciates at a constant rate 6. This leads to the
following equation for the growth of capital:

(5) K, 1=sY,+(1-8)K,.

Tables 3 and 4 report respectively the un-
constrained and constrained (by a = 1) esti-
mates of the parameters when (5') is used in
place of (5). Only annual data are used,
since we did not have a long enough quar-
terly time -series at the depreciation rates
that are commonly used.!! The first set of
estimates in Tables 3 and 4 sets & at 10
percent; the second sets it at 8 percent. The
parameter C is the same as before (see
footnote 10) with y = In s. Further detail is
in Appendix 3.

All of the estimates imply a significantly
negative marginal social product of capital,
at magnitudes that are simply incredible.
Evidently, (5') lends even less support than
does (5) to the idea that there are positive
externalities to the capital input, or to the
notion that in the aggregate production
function returns to scale are increasing. The
first four tables relied on (5) or (5') to elimi-
nate the capital input from the production
function. The next four tables present esti-
mates that use the capital series directly. In
Table 5, the low estimate of « is probably
due to the high short-run elasticity of out-
put with respect to labor, which is higher
than labor’s share, 1 — a. Given that « is set
at 0, 6 becomes the output elasticity with
respect to capital. Thus, Table 5 cannot
really be interpreted as supporting the hy-
pothesis that 6 is positive. The estimates in
Table 6 are more favorable to the hypothe-
sis; a is now constrained to equal %, yet 8 is

we did experiment with postwar quarterly data,
using a 10-year weighted average of past Y,’s to con-
struct the capital stock. The estimate of 9 (with a not
constrained) was — 1.52 and significantly different from
zero. Thus, when (5') is used in place of (5), the annual
and quarterly data both yield estimates of # far below
these in Table 1.

—r L :
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TABLE 3—UNCONSTRAINED MAXIMUM-LIKELIHOOD ESTIMATES, YEARLY DATA
OnLY, Basep oN Ap Hoc Savings RuULE (5')

é Parameter Estimate SE t P

0.10? p 0.98 0.00 159.52 0.000
[} -1.65 0.57 -2.89 0.005
C 0.29 0.08 3.52 0.000
Ay 0.31 0.17 1.83 0.072
Ay 0.26 0.16 1.62 0.109
a 0.02 0.10 0.23 0.818

0.08° p 0.98 0.00 190.49 0.000
0 —1.84 0.55 —-335 0.001
C 0.33 0.07 4.29 0.000
A 0.28 0.17 1.59 0.116
Ay 0.25 0.16 1.51 0.137
a 0.02 0.09 0.27 0.784

Note: The estimates are unconstrained in that « need not equal

Log likelihood = 101.20 (37 observations, 31 degrees of freedom)
Log likelihood = 101.81 (37 observations, 31 degrees of freedom).

TABLE 4—CoNSTRAINED MAXIMUM-LIKELIHOOD ESTIMATES, YEARLY DATA ONLY,

Basep on Ap Hoc Savings RuLE (5)

& Parameter. Estimate SE t P
0.102 p 0.98 0.00 220.51 0.000
0 -2.62 0.57 —4.60 0.000
o 0.38 0.08 4.62 0.000
A, 045 0.19 2.36 0.021
A,y 0.40 0.18 2.19 0.032
0.08° P 0.98 0.00 245.34 0.000
0 —-2.84 0.60 —4.68 0.000
C 0.41 0.88 4.71 0.000
A 0.41 0.20 2.07 0.042
Ay 0.38 0.18 2.12 0.038
Note: The estimates are constrained in that a = 1.
Log likelihood = 96.88 (37 observations, 31 degrees of freedom).
®Log likelihood = 97.42 (37 observations, 31 degrees of freedom).
TaBLE 5-UNCONSTRAINED MAXIMUM-LIKELIHOOD EsTIMATES USING ANNUAL
CarrtaL DaTa
Parameter Estimate SE t P
0 0.31 0.10 293 0.006
a -0.04 0.12 -0.32 0.749
C -1.16 0.58 -1.97 0.057
A 0.31 0.18 1.70 0.099
Ay 0.18 0.16 1.09 0.281
p 0.83 0.06 12.78 0.000
Notes: The estimates are unconstrained in that « need not equal . Log likelihood =

101.68 (37 observations, 31 degrees of freedom).
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TABLE 6—CONSTRAINED MAXIMUM-LIKELIHOOD EsTIMATES USING ANNUAL
CarrtaL Data

Parameter Estimate SE t P

p 073 0.07 9.66 0.000
/] 0.23 0.05 4.17 0.000
(o -1.44 0.52 -2.75 0.009
A 0.36 0.18 2.03 0.050
Ay 0.27 0.16 1.68 0.101

Notes: The estimates are constrained in that « = 3. Log likelihood = 97.47 (37 obser-

vations, 32 degrees of freedom).

TaABLE 7—OLS EsTiMATES UsSING ANNUAL CAPITAL DATA: LEVELS

Parameter Coefficient SE t P

C -0.40 142 —0.28 0.777
I-a -0.13 0.18 -0.70 0.483
a+0 1.06 0.09 11.67 0.000

Notes: R? = 0.98, R? = 0.98, residual SS = 0.04, SE of estimate = 0.03, total SS = 4.14,
Fi3,34=1,420.61, P =0.00, Durbin-Watson statistic = 0.60 (37 observations, 34 de-

grees of freedom).

TABLE 8—OLS EstiMaTES USING ANNUAL CAPITAL DATA: GROWTH RATES

Parameter Coefficient SE t P

C 0.02 0.02 1.26 0.215
1—a 1.01 0.16 6.13 0.000
a+d -0.35 0.75 -047 0.641

Notes: R? = 0.54, R? = 0.51, residual SS = 0.01, SE of estimate = 0.01, total SS = 0.02,
Fi3,33=19.79, P = 0.00, Durbin-Watson statistic = 0.78 (36 observations, 33 degrees of

freedom).

still positive and significant. This is the only
solid piece of evidence in favor of Romer’s
hypothesis that we can find in the postwar
data. At the same time, the estimate of p is
surprisingly low. Tables 7 and 8 present
ordinary least-squares (OLS) estimates of
the aggregate production function. If p is
close to 1, and if (5) is appropriate for
annual (as opposed to quarterly) data, then
according to the model in equations (2)-(5)
and assumption (6) the OLS estimates of
the coefficients in the growth-rates equation
(Table 8) are unbiased. On the other hand,
the levels equation involves upward bias on
the capital coefficient and downward bias
on the labor coefficient.

'Given the wide diversity of the estimates
for 0, a, and p reported by the eight tables

in this section, it seems that the assump-
tions we have added to Romer’s model do
not substantially improve the ability of his
model to rationalize high-frequency data.
We therefore agree with Romer’s (1987 p.
186) view that data from more countries
and longer epochs should provide addi-
tional and perhaps better information on
the model’s parameters, and in particular,
on 6. We look at cross-country data next.

III. Cross-Country Evidence on the
Univariate Representation for y,

Under certain assumptions, the Heston-
Summers panel data on countries’ GNP’s
will provide additional information on the
parameters of the model. This is what we
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examine next. We assume that all countries
have the same production functions and
tastes and that the only differences among
them are their initial values for k,, /,, and
z,. In particular, z, obeys the same process
in all countries, although its realizations can
vary. Because we shall be looking only at
the y, process,'? and because /, (in addition
to k, and z,) will also be treated as unob-
servable, some further assumptions will now
be added. First, we shall assume that A, =
A, =0 in equation (4), so that w, = ¢,. This
is done for analytical convenience, and it
ought not to make much quantitative dif-
ference in this section, where we examine
growth rates over a period of 25 years (and
not at annual or quarterly growth rates, as
was done in the previous section), so that
the two-year moving average induced by the
A’s should not matter much, if at all. Sec-
ond, we shall assume a particular stochastic
process for the /, sequence; in each country
I, is assumed to follow the stochastic pro-
cess

L=m+r,_+w, Irl<1

where w, is independently and identically
distributed and independent of ¢,. We esti-
mated this equation using U.S. annual data
and OLS and obtained

l,=—022 + 1.03],_,
0.18) (0.02)

R*=0.98
DW =1.85.

Our maximum-likelihood results together
with this suggest that, at least in the U.S,,
both p and r are quite close to unity. We
shall then take the bold step of assuming
that this is true in all the countries in the
Heston-Summers sample.'®

2The Heston-Summers data set has information on
population but not on the labor input. It also has no
information on the capital input.

3Robert Barro’s (1988) cross-country study of the
univariate process for log(unemployment) (again, with
annual data) revealed some significant cross-country
differences in the degree of persistence in that vari-
able. Nevertheless, at least in the postwar sampies, the
AR(1)-coefficient estimate typically does not differ sig-
nificantly from unity. There are, however, good reasons
to suspect the truth of our assumptions about /,. First,
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A. Gibrat’s Law in Growth of GNP

Although, even under these additional as-
sumptions, a study of the y, process on its
own will not identify 8, it will nevertheless
rule out a great many possible values that
the pair of crucial parameters (p,8) can
assume. One source of information about
the behavior of y, in 115 countries comes
from the Heston-Summers sample (which is
now updated to 1985). The regression below
represents the relationship between the av-
erage 1960-1985 rate in GNP growth of a
country on the one hand, and its 1960 GNP
on the other.!* That is, the growth of coun-
tries is regressed on their initial size. The
regression results reveal no significant rela-
tion between the two:

(8) Ay;= 0.047 — 0.0004y; i=1,...,115
(0.015) (0.001)
residual variance = 0.0004

where y, is the logarithm of 1960 GNP for
country i and Ay, is its growth per year
over the 1960-1985 period (standard errors
are in parentheses). Thus, the updated sam-
ple roughly confirms the nonsignificant rela-
tionship between growth and initial size that
others have found,!® a (non-) relation that is
in other contexts often referred to as
“Gibrat’s Law.”

To find out what the seeming absence of
a relation between size and growth means
for our structural parameters, combine
equations (2) and (5) to get

(9) Yz=(a+0)(‘y+)’¢—1)+’71

human capital should respond positively to ¢, in much
the same way as physical capital. This would tend to
induce a positive correlation between /, and ¢,. On the
other hand, fertility responds negatively to income, and
this would tend to induce a negative correlation be-
tween /, and longer lags of ¢,.

Kuwait was excluded from the regression, as it is
an extreme outlier.

This finding is for countries as a group, most of
which are small and have little R&D investment. For
industrialized countries, the result is somewhat differ-
ent (see William Baumol and Edward Wolff, 1988;
Bradford DeLong, 1988).
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where 1, =(1-a)l, + z,. Repeated substi-
tution for lagged y’s leads to the following
predicted relation between growth and ini-
tial size:

(1) yr—y,=[(a+0)"~1]y,

T-1

Y (a+6)

i=0

+

X [(a +0)y+ 77:+T—j])'

The form of equations (9) and (10) depends,
of course, on the savings rule in equation
(5), and the theoretical justification that we
provide for this savings rule rests on the
assumption that capital depreciates fully
each period. However, this section and the
next both look at data at a frequency no
greater than once every 25 years, and so this
assumed depreciation rate may approximate
reality quite well in this context.

Without further work, equation (10) can-
not be used to interpret the regression re-
sults reported in equation (8), because y,
will be correlated with the disturbance in
(10). One can see this by assuming that
r=p, so that n,=(1-adm+pu+pn,_, +
g, +(1—a)w,, and by recursively substitut-
ing for lagged n’s in (7) to obtain

(11) 77t+T—j = PT_jﬁt
(T =) [n+(1-a)m]

T—1-j
+ 2 pJUHT—j-s
s=0
where v, =¢, +(1— a)w,. As long as p>0,
innovations in n tend to persist, and 1, and
y, will be positively correlated for each
country. Substituting from (11) into (10) then
implies that the least-squares estimate of b
in the regression Ay, =a + by, is identically

(12) b=(a+6)"-1

+ { [Cov,-( Mies Yir) /Var,( Yir)]

T-1
X Y. (a+0)pT 7},
j=0
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The subscript i on Cov; and Var; is there to
emphasize that it is i that varies while ¢ is
held fixed at ¢ = 1960. R

To compute the expected value of b, we
invoke our assumption that the parameters
of the y, process are identical for all coun-
tries, in which case the empirical bivariate
distribution of (y;,,n,,) over countries i at ¢
approximates the stationary distribution of
(y,,m,) for a given country when this dis-
tribution exists. When either p—1, or
(a + 8) - 1, this distribution blows up,'® but
Appendix 1 shows that the ratio
Cov(y,n)/Var(y) still converges:

(13) rl;rfl_l[COV(m,y,)/Var(Y.)]
=1-(a+89).

Substituting from (13) into (12) and noting
(once more from Appendix 1) that

T-1
lim Y (a+6)p"
p—=1 9

= [1—(a—9)T]/[1_(a+0)]

yields
(14) IimlE(B)
=(a+6)" -1+ {[1-(a+06)]

x[1-(a+0)"]/[1-(a+6)])
=0.

Therefore, if p and r are roughly 1, Gibrat’s
Law will hold regardless of the value of 9.
This means that the failure of GNP levels to
converge does not identify 6.

18Because y, acquires a permanent component if
p=1 or if a + 6 = 1. Therefore, the findings of Charles
Nelson and Charles Plosser (1982), John Campbell and
Gregg Mankiw (1987), and John Cochrane (1988)—that
one cannot reject the hypothesis that, in the univariate
ARMA representation of GNP, innovations to GNP
have a permanent component—do not, by themselves
tell us whether « + 6 = 1, or whether p or r is equal to
unity.

- <L 1
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As a caveat, we point out that our analy-
sis treats countries as closed economies and
looks for scale effects or spillover effects
within but not across countries. Yet, geo-
graphical borders are in some respects an
arbitrary division of geographical space and
are therefore “noisy” measures of market
areas within which, according to our analy-
sis (and Romer’s), these scale or spillover
effects are assumed to be confined. Never-
theless, differences in culture and language
and the presence of capital controls and
other trade barriers do support the use of
geographical borders to delineate the extent
of the market.!”

B. Growth in the Cross Section and in
the Time Series

A second set of questions emerges from
our assumption that the bivariate distribu-
tion of (y,n) among countries at a point in
time is the same as the stationary distribu-
tion of (y,n) for a given country over time.
The first point to note here is that the truth
of this hypothesis is completely independent
of the length of the epochs (T},); instead, it
has to do with how long the stochastic pro-
cesses y;, have followed the law of motion
(9) and with the speed of convergence to
the stationary distribution implied by the
parameters a + 6, p, and r.

The assumption that the cross-section
distribution coincides with the stationary
distribution can also be tested. Let g; be

170f course, if significant cross-country spillovers in
knowledge do exist, they surely run mainly from the
rich nations toward the poor ones, and if so, they
represent a force in support of convergence. In our
model, the parameter u presumably depends inversely
on what is known domestically relative to what is
known abroad. Two models of learning in situations
where different agents know different things are pre-
sented in Jovanovic and Rafael Rob (1989) and Jo-
vanovic and Glenn MacDonald (1988). In both of these
theoretical models, those who are further behind learn
more (through imitation) than those who are closer to
the leaders, simply because they have more to learn.
This argues for a higher u for the poorer nations.
However, such a perspective ignores the constraints on
the capacity of people in a developing country to
absorb and apply the technologies that the more ad-
vanced countries have already created and put in place
(see Raymond Vernon [1989] for a viewpoint that em-
phasizes these constraints).
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FiGure 1. THE EMPIRICAL DISTRIBUTION OF
COUNTRY-SPECIFIC VARIANCES OF GROWTH

the growth rate of GNP in country i be-
tween periods ¢ and ¢ + 1. If the hypothesis
is true, the distribution of g; (¢t =
1960, ... ,1984) for each fixed i should be
roughly the same as the distribution of g,
(t=1,...,115) for each fixed ¢.'® In particu-
lar, if 0 and o7 are the variances of the
two respective distributions, we should have
o2 = o2, at least for most i and most ¢. In
fact, o> and o both vary considerably as i
and ¢ vary, although on average they are
roughly the same:

115
—_ 2
(115) Y. o = 0.0035

i=1

1 13%4 ,
— o/ =0.0034.
( 25 ) t = 1960 !

The variability of ¢,> is documented in Table
9, and the variability of o is described in

BActually, this is true only if g;, and g;, are inde-
pendent random variables for i# j. In fact, Table 9
reveals significant time effects in the world’s mean
growth rates, especially after the first oil shock. This
seems to imply a fair degree of contemporaneous co-
variation in countries’ growth rates from 1974 on. If so,
the variance of growth rates over countries at a given
date shouid in fact be less than the variance of growth
rates over time in a single country.
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TABLE 9—MEAN AND VARIANCE OF THE
Cross-CouNTRY DISTRIBUTION OF
YEarR-To-YEAR GRowTH RATES IN GNP

Year Mean Variance (¢?)
1961 0.0509 0.0034
1962 0.0528 0.0038
1963 0.0497 0.0023
1964 0.0527 0.0036
1965 0.0498 0.0032
1966 0.0487 0.0034
1967 0.0427 0.0023
1968 0.0536 0.0024
1969 0.0559 0.0030
1970 0.0543 0.0027
1971 0.0493 0.0027
1972 0.0511 0.0029
1973 0.0577 0.0036
1974 0.0429 0.0036
1975 0.0185 0.0059
1976 0.0526 0.0027
1977 0.0398 0.0028
1978 0.0453 0.0030
1979 0.0323 0.0052
1980 0.0327 0.0037
1981 0.0210 0.0061
1982 0.0023 0.0029
1983 0.0133 0.0033
1984 0.0362 0.0046
1985 0.0263 0.0020

Notes: Data are from the Heston-Summers sample,
with Kuwait excluded. Growth rates are over the previ-
ous year.

the histogram in Figure 1 (in which Iraq,
whose 2 X 1,000 = 30, was omitted).’® A
comparison of Table 9 and Figure 1 reveals
that the varlablhty of o is greater than
that of a- , which is what one would expect
(if in truth they were equal) on samplmg
grounds since (a) o, averages the variance
of g, over 115 countries, while o> averages
it over 25 years only, and (b) for ﬁxed i, the
observations g,, are autocorrelated.

C. Medium-Run Differences in Growth
Among Countries

While the variability of growth rates
among countries does not seem to differ
from the variability of growth rates within

It turns out that 02 is significantly negatively

correlated with y; 1g69. That i is, initially larger countries
have less‘vanable growth rates. For instance, for the
United States, o; 2 = 0.0006.
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countries, one might still wonder whether
differences in growth rates among countries
are too persistent to be consistent with our
model. The model asserts that, except for
initial conditions, the 7, process is the same
over countries. One way to pose the ques-
tion about persistence is to ask about the
cross-country variance of the mean growth
rates over the 25-year periods. That is, does
the model allow for a reasonable chance
that some countries will grow much faster
than others over a period as long as 25
years, or is this possibility a remote one?

The variance of growth within a country
over time ultimately depends on the vari-
ance of the process 7, =¢, +(1— oz)w The
first step is to see what values of a and o2
are compatible with the variance of 25-year
annualized growth rates. In Appendix 1, we
have calculated the variance of the steady-
state dlstrlbutlon of Ay as a function of g,
and (7 . Since Ak, = Ay,_,, the steady-state
variance of Ay c01n01des with that of Ak,
and this expression is provided in Table Al
(Appendix 2), where it is denoted by a,,. If
we hypothesize the truth of the Solow neo-
classical model and insert T = 25, 8 = 0, and
a=1% in this expression, it reads a k=
240,? +(48.5)02. This expression, when di-
vided by 252, should equal the empirical
value of the cross-country variance of the
25-year averaged growth rates. This value
turns out to be equal to slightly less than
the variance of the residual in equation (8),
namely 0.000355. Thus, setting a,, /25°
equal to this number yields a linear restric-
tion on ¢;? and ¢,2, namely

(2402 +48.50%) /25% = 0.000355.

This is the restriction on o2 and o? that
will generate the medium-run growth dif-
ferentials across countries that we observe.

If one were to substitute the U.S. values
for 02 and o2 into the above expression,
one would obtain an expression for its left-
hand side that is much smaller than the
right-hand side. If p and r are both unity,
one can estimate 0,2 and o by the variance
of Al and Az, respectively. Doing this for

the postwar annual U.S. data yields o2

=g

e - i S R
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0.00044 and o7 = 0.00037.%° Substituting
these values 1nto the above expression yields
just 0.000046, which is too small by a factor
of 7.7.

This is not the end of it, however, be-
cause of the heteroskedasticity of growth
rates over countries. The variance of the
U.S. growth rate is 0.0006, whereas the
growth-rate variance for the median country
is about 0.003, and its mean is 0.0035.
Therefore, the variability of growth in the
“average” country exceeds that of the
United States by a factor of about S or 6.
Since the U.S. variability underestimates the
right-hand side of the above equation by a
factor of 7.7, it is likely that, if we had
estimates of o> and o> from the average
country, we would have explained roughly
65-78 percent of the cross-country variabil-
ity in growth rates. The discrepancy is
therefore far smaller than one would have
thought; to account for it, one or more of
the parameters that we have assumed to be
the same for all countries might have to be
made country-specific.?!

The above arguments suggest that the
augmented Solow model with 8 =0 is con-
sistent with the bulk of cross-country growth
differentials in the medium run. However, it
is clearly not consistent with the tremen-
dous heteroskedasticity in yearly growth
rates that Figure 1 highlights, although such

The covariance between Al and Az is 0.00012.
Ignoring it, as we do here, hurts rather than helps our
case. Note also that the estimate of a that we have
calculated here is actually consistent wnh its estimates
for the annual data in Tables 1 and 2, because, since
we are assuming no moving-average terms in IhlS sec-
tion, the relevant comparison is with (1 + /\2 + /\ )0' in
those tables.

Y For instance, the parameter p might have to be
made country-specific. Country-specific fixed effects
are, in this context at least, simply a label for one’s
ignorance, and the calculations about variances re-
ported in the above paragraph are too rough and
tentative to convince us that the country-specific fixed
effect is needed here. Our z;’s are, we submit, less
objectionable, because they at least are stochastically
equal among countries, although their particular real-
izations can vary. Moreover, even if p and r are unity,
the long-run growth rate of z is just u for each
country, and there can be no long-run differences in
growth. We discuss this in greater detail in the next
section.
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heteroskedasticity could also have been
produced by measurement errors with
country-specific variances.

While the above discussion leaves some
unanswered questions about our model’s
ability to explain (a) the lack of convergence
of GNP levels and (b) the existence of per-
sisting differentials in growth rates, we
should in all fairness point out that an alter-
native explanation for (a) and (b) simultane-
ously, is as yet unavailable. For instance, in
Romer’s (1987) model, with a constant sav-
ings propensity tacked on, a+6>1 (a+
0 <1) implies that the growth rate will be
positively (negatively) correlated with the
size of the capital stock, while a+68=1
implies independence. Under indepen-
dence, which seems supported by data, dif-
ferences in growth rates among countries
must be due either to differences in tech-
nology and savings rates or to shocks. The
mere presence of externalities (8 > 0) does
not by itself account for differences in
growth rates.

IV. The Relation Between Inputs and
Output Over Longer Epochs

Consider a regression such as the one
that Romer (1987) reports in his equation
18. In country i, over a period length T,
differences in the growth of inputs and out-
puts are calculated, so that, for instance,

Ay, =y 41, ~ Vi Thatis, the regression is
+ b,Ti,"1 Al, +uy,.

Romer uses 18 observations that span seven
countries (subscript i), and four epochs
(subscript t) of at least 30 years in length;
the measure of the labor input is hours
worked. The least-squares regression results
that he reports in his equation 18 are: bk =
0.87 with a standard error of 0.08, and b,

0.04 with a standard error of 0.18. Our aim
here is to calculate the expectations of b,
and b, in light of the added assumptions
that we have imposed on the evolution of &,
I, and z. The least-squares estimates of the
coefficients, denoted by carets, are identi-




ﬁ_,ﬁ—_“_[ﬂ . -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com

VOL. 81 NO. 1

cally equal to??

b
bk =|la+0
b

—
I
R

n k ) a
+k ay ay Qu
I ay ay a5,

from which one can show that, since Ea,, =
0 by equation (6),

Bk a+8
o ofs]-:4
1
+| E

2

Arp 8y — Qg
% Ay A || g,
— Gyt Ak 0

=[a+0]+(E 1

— 3
l-a Al — Ay

a8y
X\ _ .
AriGpy

Since the a,; are all positive, l3k will be
biased upward while b, will be biased down-
ward, with the bias on b, equalling
—ay /a,, times the bias on b,. Appendix 2
calculates the a;; on the assumption that all
countries are subject to the same stochastic
process but face different realizations of the
e’s and w’s, as well as different initial condi-

2 This equation follows directly from the application
of the least-squares formula. The number of observa-
tions (i.e., the number of country-epoch pairs) is n.
The ai; are the raw moments. For instance, axi=
L, Ti;* Ak, Al,, and so on. The variables with over-
bars are the mean growth rates over the sample. For

instance, k =L, , T;, ! Ak;,, and so on.
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tions. The resulting expressions for the a;;’s
are quite messy, but the following limiting
results are worth noting:?*

(17) { Jim [E(8,)]} =1

lim
r,p—1

(18)  tim { lim [E(8,)]} =0.

rp—=1\T 5

These results are of relevance if the epochs
(which are of length T) are long and if z
and / are roughly random walks, as appears
to be the case empirically. Therefore, E(b,)
is zero, regardless of the relative values of
o/ and o2, while E(b,)=1if > =0. These
expected values are of course not far from
Romer’s actual estimates, b, =0.87 and
b, =0.04.

Table Al of Appendix 2 reports the ex-
pressions for the a,; that one can use to
calculate the bias in the least-squares esti-
mates b, and b, for the cases in which (a) T
remains finite but p and r tend to unity and
(b) p and r are less than unity but T goes to
infinity. In both cases, the bias remains pos-
itive but is difficult to represent analytically
in a compact way. The main point is that
the limiting values expressed in equations
(17) and (18) are good approximations for
the values that b, and b, would be expected
to take for large T and for r and p reason-
ably close to 1.

Equations (17) and (18) are the same as
what Christiano (1987) obtains under a dif-
ferent but related set of assumptions. He
allows for country-specific fixed effects u; in
(3) and m; in the equation governing the
evolution of /, while assuming p =r =1 and
0,2 = 0. His theoretical results also assume
0,2 = 0, while his simulations allow for o2 >
0; both yield the analogues of (17) and (18),
and he argues, as we do, that the results

Bwe present the results only for this particular
limiting case because the general expressions would be
very lengthy. Table Al in Appendix 2 presents results
that make it possible to compute E(b,) and E(b,) for
finite T or for p and r less than unity.
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that Romer reports in his equation (18) are
consistent with 8 being 0.

Several additional insights follow from our
analysis, however. In explaining these, it is
worthwhile to elaborate on the differences
between our model and Christiano’s (1987)
fixed-effects model. These differences are
best explained under the assumption that
0,2 = 0 (i.e., that labor supply is nonrandom).
In the fixed-effects model, a country’s long-
run growth rate is u; /(1 — a). In our model,
the long-run growth rate for z is

{,L if p=1

T
lim 7' Y (z,0,—2,) = 0 ifp<l.

Tow® t=1

Since u is the same over countries, coun-
tries must, in the long run, all grow at the
same rate regardless of the value of p. Thus,
a fixed-effects model delivers a positive vari-
ance of long-run growth rates among coun-
tries, while ours does not.?* Our view gets
further support from recent empirical work
by Danny Quah (1990), who argues that, in
the Heston-Summers data, income growth
rates show convergence to a common value.

In our model, the upward bias on the
capital coefficient is positively related to p.
Continuing with the case in which labor
input is nonrandom (o;2 = 0), we find from
the second column of Table Al that, as T
approaches «, the bias on the capital coef-
ficient approaches

p[l-—(a+0)2]
1+ p(a+0)

As p goes to unity, so that (18) obtains, the
bias becomes 1—(a + 8), while as p goes to
zero, the bias becomes zero.

The conclusion we draw from this exer-
cise is the same as the one Christiano draws:
the regression results that use data on long-
run movements of output and both inputs

%4Table Al contains information about the speed of
convergence to zero of variables such as a;,, the
variance of the long-run growth rate of capital stock.
The table shows that this and other variances and
covariances go to zero at the rate 7~! when p=1,
while they go to zero at the rate 7-2 when p <1.
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also provide no support for the hypothesis
that @ is significantly positive.

Aside from the hypotheses that Romer,
Christiano, and we have advanced, yet an-
other argument can be advanced to ratio-
nalize the high estimated coefficient of Ak
and the low estimated coeflicient of Al: the
growth of the physical capital stock may be
strongly positively correlated with growth of
labor quality, while growth in hours worked
may be negatively related to the growth of
labor quality. The latter association is well
documented at high frequencies in the mi-
cro data, and Romer’s (1987) figure 1 pro-
vides some indirect evidence for it at lower
frequencies for the United States. Since the
empirical estimates of equation (15) use
hours worked unadjusted for quality, this
would tend to cause an upward bias on
capital’s coefficient and a downward bias on
labor’s coefficient. This hypothesis, which
does not revolve around either external ef-
fects or increasing returns, still awaits a
careful theoretical treatment, but whatever
its eventual fate, it is important to bear in
mind that it is independent of the other
hypotheses discussed here. Of course, if one
were to insist that increases in the capital
stock cause measured equiproportionate
improvements in unmeasured labor quality,
then one is back in a framework captured
by equation (1), with, say K? denoting un-
measured labor quality, and this is a frame-
work that the data do not seem to support.

V. Microfoundations of the Model

Our remaining task is to provide a firmer
analytic foundation for the equations used
in our estimation process. The key element
driving the results that stem from the struc-
tural equations (2)—(5) and assumption (6)
is the dependence of the capital stock,
through savings behavior, on the stochastic
shock to production in the previous period.
If this shock is serially correlated, current
output will also depend on the shock in the
previous period. Therefore, the correlation
of contemporaneous output and capital not
only reflects the internal and external im-
pact of contemporaneous capital on output
but contains an additional component
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through the joint dependence of output and
capital on the previous productivity shock.
Ignoring this element results in exaggera-
tion of the importance of capital in produc-
tion. In this section, we spell out a stochas-
tic overlapping-generations (OLG) model as
well as a stochastic Brock-Mirman type of
growth model to justify the equations of the
previous section, especially equation (5) and
assumption (6).

We start with a special OLG model in
which the representative agent in genera-
tion ¢ faces a wage w, and a stochastic rate
of return on his savings, , . ;. Therefore, his
consumption in the second period of his life
is ¢, =(w,—c)r,.,. We assume that the
agent has a logarithmic utility function

Bln ¢, +(1" B)Eln(w, _ct)rl+l

which he maximizes by choosing c,. The
production function is assumed to be of
Cobb-Douglas form with a multiplicative
productivity shock and is given by (1).

Population growth is stochastic, so that
L,=L,_ 1+ N,), where N, is indepen-
dently and identically distributed with mean
zero. The wage rate and the interest rate
are equal to the marginal products of labor
and capital, respectively. Since the agent
bases his saving decision on the marginal
product of capital in the next period, he
faces a stochastic interest rate (on account
both of the stochastic productivity shock
and the stochastic growth of labor).

The agent’s optimal savings do not de-
pend on the interest rate, so that s, =(w, —
¢,)=(1-B)w, Thus, the total savings,
which determine next period’s capital stock,
are

s, Ly=K, = (1~ B)(1- a)Z,Ks+°L} ™
=(1-8)(1-a)y,

since the share of labor is the fraction 1~ «
of output. Taking logarithms immediately
yields equation (5) and assumption (6) of
the previous section.

Before moving on to the infinite-horizon
model, we should discuss the role of specific
functional forms and assumptions. The log-

. |
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arithmic utility function simplifies matters
considerably by eliminating the dependence
of savings on the next-period rate of return;
but its use in this context goes beyond alge-
braic convenience. Slightly altering the util-
ity function, say to one with a constant
relative risk aversion, may yield a savings
function that either increases or decreases
with the rate of interest, depending on
whether the risk-aversion coefficient is less
than or greater than unity in absolute value.
Since an increase in the productivity shock
leads to an expected increase in the shock
next period and raises the expected interest
rate, productivity shocks may in fact de-
crease savings and next period’s capital stock
if the direct wealth effect through wages is
dominated, resulting in a negative correla-
tion between K, , and Z,,, and contra-
dicting equation (5) in the previous section.
(This issue will also arise in the infinite-
horizon model considered below.) In draw-
ing generalizations from the example, there-
fore, we should keep in mind that we may
need a preference specification for which
savings are a nondecreasing function of the
interest rate.?

We now turn to the specification with an
infinitely lived representative agent. Before
exploiting specific functional forms, we pre-
sent a general version to pinpoint again the
role of the assumptions embodied in our
specific functional forms.

The representative agent has an instanta-
neous, twice-differentiable utility function
U(c,,a, — L,), defined on feasible consump-
tion and leisure sets, where a, is a stochas-
tic labor endowment and L, is the labor
supply. We may specify 4, as a multiplica-
tive Markov process to reflect population
growth, since the actual supply of labor will
be endogenously chosen. The twice-dif-
ferentiable production function is given by

ZAnother set of problems that plague the OLG
model relates to the continuum of equilibria. While
our special specification avoids these problems, multi-
plicities will arise either if outside money is introduced
as an additional asset or if the labor-supply decision is
endogenized and the logarithmic specification of utility
is dropped (for a detailed analysis see Benhabib and
Guy Laroque [1988)).
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Y,=2Z,f(K,,K,, L), where Z, is the
stochastic shock to the production function
and K, (= K,) enters the production func-
tion to reflect an externality. Let 8 be the
depreciation rate of capital. The agent, fac-
ing constraints K, , = Z,f(K,, K,,L )+
(1-8)K,—c, and a given K,, maximizes
E):"(‘,’B’U(c,,a, —L,) by choosing each c,
and L, after observing Z, and q, at every ¢.
In dynamic programming form, the problem
can be expressed as

V(Ky,Zy,ay) = max U(ZOf(KO’I?O,LO)
K, L

1=
+(1-8)Ko— Ky,a0— Ly)
+BEV(K,,Zl,a1).

To simplify matters, we assume that the
value function V is twice-differentiable in
(K, Z). (The twice-differentiability of V' in
certain stochastic cases can be established
by the methods of Lawrence Blume and
David Easley [1982]). Let the derivatives of
V(K,Z,a) with respect to K and Z be
denoted by ¥}, and V, and let the second-
order derivatives be denoted by Vi, V,,,
and V,,. Similarly, let U, and U, be the
derivatives of the utility function with re-
spect to consumption and leisure, with sec-
ond derivatives U,., U,;, and U, ;. Again,
for simplicity, we will assume that U, =0.
Finally, let the derivatives of the production
function be denoted by f,, fz, and f,. Stan-
dard methodology establishes the first-order
conditions for the representative agent’s
problem with the usual interpretation:

(19)  U{Zof (Ko, Ko, Lo)
+(1-8)Ky—K,,a0— Ly)
=BV, (K,,Z,,a,)
(20) Uc(ZOf(KO’I?O’LO)
+(1-8)Ky,— K,,ay— L)
X Zof(Ko, Ky, Lg)
=U(Z,f(Ky, Ko, Lo)
 +(1-8)Ky— Ky,a9— Ly).
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From equation (20), we can obtain the
optimal-labor-supply function as Lo
L(K,, Ky, Ky, a9, Z,). Let L% and LY indi-
cate the derivatives of L, w1th respect to Z,
and K,

As discussed earlier, we want to investi-
gate the effect of Z, on K,,, to establish
the nature of the covariance between K,
and Z,_,. Using (19) and (20),

dK, /dK,
= [(ULL + UcZofLL)(UchoFk)

U, ZofLU.Zoferl/D>0

and
dK,/dZ,
= [(ULL +U.Zyf11)
X (Uccf - ﬂEsz dzl /dZO)
Z}f?BEV,,dZ, /dZ,] /D

where
D=(U, +U.Zfy J(U,

+BEU, Vi  Z3f2 >0
F,= fk(KO:EO)LO)

+ fz(Ko, Ko, Lo) +(1-8)

+ BEVy,)

and where V,, and V,, are evaluated at
(K, Z,,a;). The policy function K, =
h(K,,Z,) is therefore increasing in K %
Also, dK, /dZ,> 0 if V,,>0. To evaluate
Vi, we ﬁrst compute

Vi Ko, Zg,a0) = U Zo| fi + fr +(1-8)]

26This monotonicity property can be established rig-
orously without assuming the differentiability of the
value function. A proof is in Benhabib and Kazuo
Nishimura (1989), in lemma 1 of that of paper’s ap-
pendix. Although the model there is slightly different,
with very minor modifications the proof applies to the
present case.
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to obtain
Vio(Ko» Zo, a)
=U (U, /U.)(8¢y /3Z4) Zy +1)
X(fe+ fr +(1-8))
+U,Zfo (dL(K o, Ky, Zy,a0) /dZ,)-

The sign of V,, and therefore of
dK, /dZ, is ambiguous for the same rea-
sons as in the OLG case. First it depends on
the degree of relative risk aversion in the
term (U"/U'Xdc /9Zy)Z, +1: if this term is
sufficiently negative, dK, /3Z, may become
negative. Furthermore, unlike our specifi-
cation in the OLG model, the labor supply
is endogenous. An increase in Z,, throug
its effect on Z,, leads to an increase in the
expected interest rate and may produce not
only lower savings but also a lower labor
supply; that is, we may have dL /dZ <.
This also tends to make V,, negative, and if
sufficiently strong, may result in dK, /dZ,
<0. In the special case of a logarithmic
utility function coupled with a Cobb-Doug-
las production function and full deprecia-
tion (6 =1), V,, is identically zero, as can
be easily computed using the solution of
this special case, reported below. Therefore,
for our purposes, it scems that the main
restrictions imposed by a model with loga-
rithmic utility and Cobb-Douglas produc-
tion with full depreciation are to eliminate
the possibility of a saving policy and a labor
supply which both decrease in response to
increases in the rate of return. To see this,
consider the policy function for the general
case given by K, =h(K,,Z,) and assume
that dh /3Z,> 0. We than have the follow-
ing lemma.

LEMMA 1: Let K,,,=h(K,,Z,), where h
is strictly increasing. If Z, follows the process
described by equations (3) and (4) with A, > 0
(i=1,2), then k, is stochastically strictly in-
creasing in z,.

PROOF:
Recursive substitution for lagged capital
shocks in h yields k, = ¢(z'), where z' =

il -
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(2,-1,2,_5,...) and where ¢ is strictly in-
creasing. Applying Bayes’ rule along with
equation (2) yields that for any vector Z €R,
Pr{z’ < %|z,) is stochastically strictly increas-
ing in z,, and the claim follows.

A corollary of the lemma is that the
steady-state covariance between k, and z,
is strictly positive, and this is all that is
required for an upward bias on the capital
coefficient in an ordinary-least-squares con-
text.

The advantage of specifying log utility
and Cobb-Douglas production with full de-
preciation is that we can solve explicitly for
the optimal consumption, savings, and la-
bor-supply policies. Using (19) and (20) and
adopting the logarithmic instantaneous util-
ity function

Alnc+(1-A)In(a—- L)

together with the Cobb-Douglas production
function Z,K*K°L!~*, it can easily be veri-
fied that savings, or next period’s capital
stock, will be

(21)  K,=aBZ,Kg 'Ly

and that labor supply is given by
AMl—a)a

22) L= (1-a)a,

(1-A)A-aB)+A(1-a)

If the random endowment follows a multi-
plicative first-order Markov process, then
after taking logarithms, (21) and (22) corre-
spond exactly to equation (5) and assump-
tion (6). Note that, to make labor supply
stochastic, we could have made the taste
parameter stochastic rather than assume a
stochastic endowment. Alternatively, if a,
A, and other relevant parameters in (22)
were constant, labor supply would be ' as
well, and we would run into identification
problems in the previous section. (Note that,
in the general specification of the model,
labor would be stochastic even if @ and A
were fixed.)

We conclude, therefore, that the specifi-
cations represented by equation (5) and as-
sumption (6), which drive our results in the
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previous section and which underlie our
empirical conclusions, can be obtained un-
der reasonable assumptions in either the
OLG or the infinitely-lived-agent models of
stochastic growth.

VL. Conclusions

Given our assumption that knowledge
causes capital but not the other way around,
our failure to find a positive 8 implies noth-
ing whatsoever about externalities in the
generation of knowledge. The Solow model
with no externalities to either labor or capi-
tal but with stochastic shocks to knowledge
does not appear to be contradicted by long-
run data on output and the two inputs;
furthermore, it is also consistent with micro
evidence on knowledge spillovers. The ap-
parent validity of Gibrat’s law in countries’
GNP series does not contradict it, nor do
the seemingly sizable medium-run differen-
tials in growth rates over countries. More-
over, the model fits in with the recent busi-
ness-cycle literature that explains properties
of cycles with productivity shocks.

The realizations of our technology shocks,
the z’s, are allowed to differ over countries,
but the stochastic process forming them is
assumed to be the same, as indeed are all
the parameters of our model. That technol-
ogy shocks can assume different values over
countries seems reasonable if one interprets
these shocks broadly to include shifts in
institutional and organizational structures,
such as shifts in the corporate, legal, or
bureaucratic structures, or even in attitudes
toward work. These elements can greatly
enhance or retard the effective use and op-
eration of factors of production. While such
changes in institutional or organizational
structures may not be permanent, they tend
to be quite persistent, so that productivity in
different economies can diverge for ex-
tended periods of time.

No doubt, a quantum leap in our under-
standing of growth will occur only when the
engine of growth, namely the z, process, is
successfully endogenized. What we think we
have shown here, however, is that this en-
gine is fueled primarily by something other
than physical capital.

e
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APPENDIX
Appendix 1: The Derivation of Equation (13)

Note first that

T ey gl-la+é/pl
PR ererr 7

If (e +6)=p, this expression is equal to
Tp”. Next, note from equations (2) and (5)
that k,,,=vy+(a+0)k, +n,, where n,=
(1-a)l, + z,. Then,

COV(T’,,k,) = COV(m,(a+9)kx-1 + 171~1)
= (a +0)C0V(11,,k,_1) .

+C°V("ln"’lt—1)~
Expanding further, we obtain

(A1) COV( Ure kr)

@

= Z (a +0)j_lcov(77n771—j)-

i=1

Since 1—-a),=(1—-a)m+(1—-a)l,_, +
(1-a)w, thenif p=r,

n=0A-a)m+p+pn,_,

+(£1 +(1_ a)wt)

so_that Cov(n,,n,_)=p’c?, where o=

[62 + (1 — @)?02]/(1 — p?). Then, using
(AD),

(A2) Cov(n,,k)=02Y p'(a+8)""
j=1
=pol/[1-p(a+6)].
From equation (2),

COV('?:,.V;) = (a+0)COV(T],,k,)+(T,,2.
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Substituting into this expression from (A2)
yields

(A3) Cov(m,,y,)
=0 {1+ p(a+0)/[1-p(a+6)])
=07 /[1-p(a+06)].

Next, we need to compute Var(y). Since
y,=(a+0)k,+mn,,

(A4) Var(y,) =(a+6) Var(k,) + o2

+2(a+86)Cov(n,,k,).
Now, since k,,; =y + y,, Var(y,) = Var(k,).
Using this in (A4) and substituting from
(A3) into (A4) for Cov(n,, k,) yields

(A5) Var(y,)

NI
1-(a+86)

The expressions in (A4) and (AS5) both ex-
plode when p approaches 1, because 02
goes to infinity, but their ratio does not:

2(a+8)p
1-p(a+8) ]

lim1 [Cov(m,y)/Var(y)]=1—a—8.
oo

This is equation (13) of the text, since, by
assumption, p =r.

Appendix 2

Here, we derive expressmns for the a;; in
equation (16) under various assumptlons
Deterministic components of z and / are
ignored. We assume in equation (4) that
A;=A,=0, so that &, =w, and so that the
w, are also independently and identically
distributed. Repeated substitution in (3)
leads to

T— %’

zr=p'z,+p

T-2
+p €p1eeotEL T

_ 1 .

BENHABIB AND JOVANOVIC: GROWTH ACCOUNTING 103

or
ATz, =2z,,;—z,
=(p"—1)z, + pT e,
+p 2 e F BT
However,
Z:=Pj+1zr—j—1+Pj5t-i—1+pj-18'-f
+p 2%, .t
so that
ATz, =(p"-1)
X(p’“z,_j~1+p"£,_j_1... +e,_1)
+PT—15:+PT‘281+1-" te 1
and also

Zij1= (P ) Z, 1
T-2

T-1
tp et p TE

T-3
+tp e i1 T E T2

Note that subscripts on A’z, for the £’s run
from t—]—l to t—1+ T and that sub-
scripts on A’z,_;_; for the &’s run from
t—j—1to t—1+T—j—1. We shall con-
sider two separate cases: (i) T—j—1>0
and (ii) T — j—1 <0, both for j> 0.

Case (i). For this case,

Cov(A"z,,47z,_;_)

- [0'52/(1_ pZ)] [(pT— l)zpjﬂ]
j+1
+o2(p"-1) X p' T
i=1

T—-j-1

2 T- ltﬂ 1-i
+to? X p
i=1
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2 .
=[a2/(1=p)](p" = 1) p"*!
+a2(pT = 1)p" !
x[(1=p=2*V) /(1= p~?)]
+ o 2pT-i=3
x[(1-p~2T77D) /(1-p72)].
As a check on the algebra, note that
lim, ,,[Cov(A’z,,Az,_;_,)]= oX(T—j-1),
because the first term goes to zero by
L’Hépital’s rule and the second term is zero.
This result is exactly as expected.

Case (ii). For (T —j—1)<0,

Cov(ATz,,ATz,_}-_l)
- [af/(l—pz)](pr—l)zp”l
T . .
+(pT_1)( Z pj+1—lpT—i)U£2‘
i=1

Again, as a check on the algebra, note that
lim, , ,[Cov(A”z,, ATz,_;_)]= 0, as it
should. As a further check, note that when
j=0, we have

Var(A72,) = [o2 /(1=p)] (67 - 1)

+[(p"2=p72)/(1-p )]0}

so that lim,_,[Var(A'z)}=o’T, as it
should. Moreover, for p <1,

lim [Var(A’z,)]

T >
=a?2/(1-p?)
+[=p72/(1-p7?)]0}

=202/(1-p?).

take limits. Combining cases (i) and (ii),

Cov(Az,,ATk,)

= ¥ (a+8) Cov(A'z,,A7z,_;_,)
j=0

T-2 ,
= Y (a+8) Cov(Az,,A"z,_;_;)
=0

J

+ i (a+8)

j=T-1

X Cov(A’z,, Az, _;_,)

T-2 _
- % (a+0y
j=0

x{[a2/(1= )] ("~ 1)’

j+1

+0_£2(pr_1) Y pI*1=ipl =i
i=1

T—j-1

+ 0-52 Z pT—ipt-j—l—i
i=1

+ ¥ (a+8)
j=T-1

8 {[03/(1— P)l(p"=1) "

T
+02(pT-1) L pt Tl

i=1

Now we shall compute Cov(A”k,, A'z), If we now let T approach o, so that the
first for arbitrary p and T, and then we shall second summation on the right goes to zero,

T r
T
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we obtain

.go(a + G)j{[oez/(l— pz)] [(pr_l)ijH]
+(p"=1)p" "’
x[(1=p=20*D) /(1-p~2)]a;

+ UEZPZT— 3p —j

x[(1=p=2T0) /(1= p72)]}

=(p"-1)"[02/(1-p?)]
X p[1=(a+6)p] "
+[a2/(1-p*)](p"-1)p" !
x{[1=(a+0)p] '
=p7[1-(a+0)p7'] ")
+p 3 {[1-(a+6)p—-1]""
—p~'/[1-(a+6)p]}o?

x(1-p=2)~"

Now we note that as T approaches «, the
second term above also goes to zero. The
first term goes to o,%p /(1 — p?)[1— p(a + 9)],
while the third term goes to p~'o?/(1—
p 1 - p(a + 0)]. Therefore,

(ASa)  lim [Cov(aTk,,A"z,)]
= {0'52/[1_ p(a+06)]}
x[p/(1-p?)
—-p~'/(1-p7?)]

=200 /(1= p*)[1-p(a+0)].

m ' 1B
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Next we calculate the limit as p approaches
1, for fixed T.

(Asb)  lim [Cov(ATz,, ATk, )]
p—1
T-2 ]
=02 2 (a+8)(T-j-1)
j=0

=02[T-1+(a+6)
X(T+2)...(a+8)" ]

=o{T[1-(a+6)]""
~[1-(a+6)7]
X[1-(a+6)] %}

=o2{T[1-(a+6)]
-[1-(a+0)"]}

x[1-(a+80)] >

Next we turn to the computation of
Var(ATk,). We have

Var(Ak, )= ¥ ¥ (a+6)""
i=0j=0
x [(1— a)*Cov(AT1,_;, AT1, )
+Cov(ATz,_j,ATz,_,-)].
Let
A=Y ¥ (a+6)"(1-a)
i=0j=0
x Cov(Al,_;,A"1, ;).

We will compute A later. If we let p ap-
proach 1 for a given T, remembering that

lim [COV(ATz, , ATz,_j_l)] =0

p—1
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for t — j—1 <0, we obtain
Var(ATk,)
T+j

=X L (a+0)™
j=0i=j+1

X[T_(i_j)]aaz

© T+i o
+¥Y Y (a+0)'™’
i=0j=i+1

X[T -(j—i)]o?
+ i (a+0)*Ta?+ A
k=0
=(2052(a+0){T/[1—(a+9)]

~[1-(a+6)7]/[1-(a+6)]%}

+T0'52[1—(a+9)2]—1)
X[l—(a+0)2]_l+/f.

We also compute Var(A’k,) for p<1as T
approaches «: we have

Var(ATk,)
=(1-a)’ Y ¥ Cov(4",_;,A"1, )
i=0j=0

X(a+0)"

X (a +0)i+j.

Let 4 again denote the first of these
expressions. We shall compute it later. Next,

»——m -

MARCH 1991
observe that, for i>jand T—(G —j)>0,
Cov(A'z,_;,A"z,_;)
=[a2/(1-p)]
x| (o' =1)%pt
+a2(pT —1)pT+G=N-2
x(1-p~0)/(1-p70)]
+ g 2p?T—G=D=2
X(1=p 2TH2=0) /(1= p72).
If we let T approach «, note that T —
(i—j)>0 and T—(j—i)>0 for all fixed
i, j. Now, break the summation for
Var(ATk,) into three parts: i > j, i <j, and
i = j. The expressions for i > j and i <j are
symmetric, so compute twice the value for
>
lim [Var(A"k,)]
T —o0

=lm|[2)Y Y (a+6)*’

To=\ j=0i=j+1
x[e?/(1-p*)]
x{(pT—1)"pi ™
+(p" =D /(1-p7)]
xp' ' p %)
+la?/(1-p )]
x[p*" %o (1= p~Tp%p )]}

+ 3 (a+8)Y
ji=0

x{lo2 /(1= pH)](p" 1)
+[e2/(1-p7 )]
X (pT=1)p"72(0)
+[a2/(1-p7)]

<[P (1-p~ )]} + 4
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= lim (Zaf[
Toox

™ (o7~ 1)’(a+ 0y
j=0
xp—i(a +0)i+lpj+1
X[1=(a+0)p]"'(1-p)
+p7 i 1-p7)
X(a+8)p "%
X{p/*(a+0)*!
X[1—(a+8)p]!
— p¥(a+0)y t1pU*D
X[1—=(a+0)p~1]"')
+(1=p ) (a + 0y
X pi{(a + )/ *1p=G+D
X[1-(a+0)p~']""
_p—ZTp—Zj(a+0)f+1
X p/ 11— (a+06)p]""}
+o21-p=2) (o7 -1)
+o2(1-p 1) T2

—o2(1-p"%) o]

x[l—(a+o)2]“]+ /f)

= lim (2{[0,3/(1—,92)](,,7—1)2
X p(a +0)[1-(a+6)?%]
X[1=(a+0)p] "
+(pT-1)p" a2 /(1-p7?)]
X p(a+8)

X[1-(a+0)] [1-(a+6)p]""
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—[e2/(1=p™D) (" -1)
X pT~2(a+8)p ' [1—(a+0)] '
x[1-(a+8)p~1]""
+[a?/(1-p79)]p*"?
X (a+0)p[1~(a+0)2]"
X[1-(a+6)p~1]""
-[e2/(1-p™)a+0)
Xp ' [1-(a+0)]"
x[1-(a+8)p'17"}
+[1-(a+0)7] "
x[a2(1-p2) "o 1)’
+ol(1-p7) TR
~o2(1-p7) o2+ /f)
- Jim (102/0= Pll1-a 07"
X {2(p" = 1)’[1 - p(a +8)] !
X p(a +6)
-2(p"-1)p"p
X(a+0)[1—(a+8)p]!
+2(p"-1)p"(a +6)
Xp ' [1—(a+8)p7"]
-2p*T(a+0)p~!
x[1—(a+8)p~'1"
+2(a+8)p
X[1~(a+8)p]™"
+[-1*- p”+1]

+2(1—pT)}+,«f)
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= lim (2[¢r3/(1-p2)]
X[1-(a +6)?]
X[(pT—l)zp(aM)
X[1-(a+0)p) ' +(p"—1)p”
x{p~'[1-(a+0)p~"]"
—pl1—(a+8)p] }(a+6)
+(a+0){pll—-(a+8)p]™!
—p [1-(a+0)p™"1p*"}
+1—pT]+/f).
Therefore,
(A6)  lim [Var(ATk,)]
=2[a2/(1-p?)]
x [1-(a+6)] "
x {2(a+8)p
X[1-(a+8)p] ' +1)
+TliinwA.

Finally, we need to compute A. Since
l,=rl,_,+w, the process /, behaves like
the z, process, with r replacing p and with
w replacing e. Therefore, using earlier for-
mulas for z,

(A7) Cov(A"l,_,,A"1,_))
=[T-(i-j)]e? forr—1
so that Var(A”l,) - To? and
Cov(A"l,_;, A"l ;)
=2[02/(1-r?)]ri for T—w,r<1

so that Var(A”],) » 262 /(1 r?).

Y T B
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Now, for r=1,

A‘=(1—o<)2i0 iOCov(ATl,_i,ATl,“j)
X(a+8)"
={(1-a)*/[1-(a+6)7])

X (202(a+6){T/[1-(a +0)]
~[1-(a+6)7]
x[1-(a+86)] 7%

+Ta?).

On the other hand, for r <1,

lim A
T >
= lim ((1—@)2
T >
X Y Cov(ATl,_;,A"1,_})
i=0j=0
X(a+0)i+j)

- 1im (1= @)*[202 /(1= %))
x[1-(a+6)7]
X[(rT—l)zr(a+0)

X[1-(a+6)r] "
+(rT=1)r"
x{r-[1-(a+0)r ]}
—r[1-(a+8)r] (a+96)
+(a+80)
x{r[1-(a+6)r] "

—r 1-(a+8)r ]r*7}

+1-77]).
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Therefore,

lim A

T >

= 2[03/(1— rZ)]

(A8)

x[1=(a+6)7]"
X{2(a+0)r
X[1=(a+6)r]'+1}.
Finally,
(A9) Cov(ATk,,ATl,)

=(1-a)

X Y Cov(ATl,,A"I,_; ;)
j=0

e
X (a+ 0)
=(1-a)d{T(1—(a+ )]

-t=(a+0T}/[1-(a+ O

forr=1.

In general, for arbitrary r,

lim [Cov(ATk,,AT],)]

T 5o
= 1im {[(1-a)o?/(1- )]
x((rT=1)r[1=(a+ 0)r] !

+(rT=1)rT*!

x{r*[1-(a+0)r~1]"

—[1—(a+0)r]_1}

- rZT‘l[l—(a + (9)r_1]_l

+r[1—(a+0)r]-1)}.
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Taking the limit, for r <1,
(A10) lim [Cov(AT1,, ATk, )]

=[(1-a)202/(1-r?)]
x[1-(a+6)r] "

Table Al summarizes the results of this
appendix that are relevant for the bias de-
scribed in equation (16) of the text.

Combined cases: r,p — 1, T - . We shall
now use the expression in the second col-
umn, and we shall send r? and p? to unity
at the same rate. The resulting expressions
are then used in equations (16) and (17) of
the text (the Landau symbol “O” refers to
the order of the expression):

202

1 £
“kk:o( 1—p2) 1—(a+0)2)

2(a+6)
(1—(a+0) 1)

+0 !
(=)

2(a+6)
X(l—(a+0) 1)

1 20
=0
(1_P2)(1—(a+0)2)

1+(a+86)
X(l—(a+0))

1 202(1—a)’
+O(1_r2)( 1-—(a+0)2)
1+(a+06)
X(l—(a+0))

“kf:o( 1-—1r2)( 1—?2&0))““”

202(1—- a)?
1-(a+6)?
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TABLE A1—EXPRESSIONS FOR THE a;; FROM WHICH ONE MAY CALCULATE THE Bias IN bk AND b,

Tur’ [1-(a+0)F

(1—11)0‘2( T[l—(a+o)]—[1—(a+0)7])

ay;: To?

o {T[1-(a+0)]-[1-(a+6)"])
[1-(a+0)]

.

Parameter Case (a): lim, lim , 7 finite Case (b): p,r <1, llm
r=1 p-1 Tore
1-(a+6)T
21752 a+6 — 2
Auy: ( )(1_(a+9) [1_(a+9)]z)+T0€ 20-!2 2(¢!+9)p .
. 1-(a+6)* (1-p?)[1-(a+6)7] (1—(a+9)p )
T 1-(a+6)" (1- a)20 2+ 0)r
2(7,3 +6 — o2
ey “ )(1“(“”) [1-(a+0)]2)+T" +((1~—r2)[1—(a+0)2] (1—(a+0)r+1)
1-(a+86)*

2

o2
2(1—4)( )[1 —(a+80)r]!

262 /(1—r?)

207p
(1-p*)[1-p(a+6)]

column reports limy _, ., T?a,; for case (b).

Note: To obtain the a; j» the expressions in the first column of the table [case (a)] should be divided by T2; the second

1
a,,=0( l_rz)(zng)

o 1 207
Deu = (1—,;2 1-(a+6)

Therefore, letting A;; be the constant in
the expression for a;
Ay — az

ol ool

1=
X{[ lpz)(A}"‘)

a,8g,

)(A,m)

o( -
+O(ﬁ)(Aik)]
e

O

X
o5

-1

where A}, and A%, are the first and sec-
ond terms in the expressmn for a,,. Now
send 1— p? and 1—r? to O at the same rate,
to get

18y

2
Qpr 8y — Ay

. Ay Ay,
(A}ck + A% ) Ay — A}

40202
=(1—-(a+0))
202 1+(a+86)
X (1—(a+o)2)(1—(a+9))
. 202(1-a)*\(1+(a+6)
1-(a+6)° (1—(a+0))

4oi(1-a) )|
[1—(a+0)]2

X202 —

w

= Im
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Observing that 1—(a+6)*=[1-(a+
N1+ a + 6) and making that substitution
on the bottom line of the above expression
leads to [1—(a + 6))* entering everywhere
in the bottom of the denominator (i.e., the
expression in large braces). Then, multiply-
ing top and bottom by [1—(a+ 0)]? /40
leaves us with

ol[1-(a+0)]
g2+(1-a)o?—(1-a)o?

Substituting this into (16) leads to (17). We
now calculate the bias on b;:

=1-(a+9).

— A8y

2
Appdy — Ay

--o[ =z aw

X0

1_p2)(Aku)

ot
ro{ 1) k)|
xo(;)(A,,)

1-r2

1 2 -
_[O( 1—r2)] Ai’}
— Ay A,
=T 2 2
(Abe + A% ) Ay — A%

—40202(1-a)

[1-(a+8)]

{{( 2062
X
1-(a+6)°

(203(1— a)?
+

1+(a+86)
(1—(a+0))

1+(a+6)
1—(a+0))

1-(a+06)*
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We note that
[1-(a+6)|[1-(a+6)]
=(1+a+0)[1-(a+0)]"
Therefore, the above equals

—4020?(1—a)

20’3[2052 +(1- a)220;3] —402(1~ a)?

- (1-a)

B 0'62+(1—(Jz)Z(J'wz—o;,z(l—a)2

=—(1—-a).

When substituted into (16) this leads to
(18).

Appendix 3

Here, we briefly describe our analysis of
the equation K, ,=sY,+(1-8)K,. This
analysis led to the estimation reported in
Tables 3 and 4. Under this hypothesis,

V1= Zet(1—a)li g
+(a+0)In[sY, +(1-8)K,]
=z, ,+(1-a)l, i,
+(a+8)In{sY, +(1-8)
X[sY,_ +(1-8)K, ]}
=z, ,+(1-a)l 4,

+(a+6)Ins

+(a+ G)In[ f‘, (1-8)’Y,_;

j=0

I
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Therefore, the analogue of the equation in
footnote 11 is

(All) Yis1 = PY;
= w, +(1_a)(lt+1_plt)
+(a+6)(1-p)ins

+(a+0)l f‘, (1-98)v,_;

j=0
©

—pln Z (1- 8)th—j—l

j=0

The w, process was once again assumed to
follow equation (4). The infinite sums in
(A11) were truncated at j=20. This was
possible because only yearly data are used
in Tables 3 and 4. Since at least about 20
years of data are needed to construct a
reasonable approximation to the infinite sum
of past Y’s, we could not use quarterly data,
as these are available only for the postwar
years (see footnote 11, however).
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